Become a Fan and "Like" us on FB

Friday, January 24, 2014

WONDERFUL WORLD OF SCIENCE# FUTURE SCIENCE TECHNOLOGY-PART-II

2. By 2030 solar energy will have the capacity to meet all of our energy needs. The production of food and clean water will also be revolutionized.

Kurzweil believes solar energy could satisfy 100% our power needs. — CNN
If we could capture one part in ten thousand of the sunlight that falls on the Earth we could meet 100% of our energy needs, using this renewable and environmentally friendly source.
As we apply new molecular scale technologies to solar panels, the cost per watt is coming down rapidly. Already Deutsche Bank, in a recent report, wrote “The cost of unsubsidized solar power is about the same as the cost of electricity from the grid in India and Italy. By 2014 even more countries will achieve solar ‘grid parity.’”
The total number of watts of electricity produced by solar energy is growing exponentially, doubling every two years. It is now less than seven doublings from 100%.
Similar approaches will address other resource needs. Once we have inexpensive energy we can readily and inexpensively convert the vast amount of dirty and salinated water we have on the planet to usable water.
We are also headed towards another agriculture revolution, from horizontal agriculture to vertical agriculture, where we grow very high quality food in AI controlled buildings.
These will recycle all nutrients and end the ecological disaster that constitutes contemporary factory farming. This will include hydroponic plants for fruits and vegetables and in vitro cloning of muscle tissue for meat, that is meat without animals, thereby ending animal suffering.
CNN videos accompanying this section:





3. By the early 2020s we will print out a significant fraction of the products we use including clothing as well as replacement organs.

Kurzweil sees the early 2020s as a “golden era” of 3D printing. — CNN
3D printing is getting a lot of attention. There are niche applications such as printing our replacement parts for machinery, but the opportunity to begin replacing significant portions of manufacturing is still about five years away.
If we look at the life cycle of technologies we see an early period of over-enthusiasm, then a “bust” when disillusionment sets in, followed by the real revolution.
Remember the Internet boom of the 1990s followed by the Internet bust around the year 2000?
That was around the time Google was getting started, and now we have multi-hundred billion dollar Internet companies.
We’re in the early boom phase of 3D printing enthusiasm and hopefully we’ve learned enough to avoid a period of undue disillusionment, but I do see the early 2020s as the golden era of 3D printing.
For example, in the early 2020s, you’ll have a choice of many thousands of cool clothing designs that are open source and that can be printed out for pennies a pound.
But that will not mean the end of the fashion industry. Look at other industries that have already been transformed from physical products to digital ones, such as books, movies and music.
Despite enormous changes in business models (and the availability of many free open source products) the overall revenues for proprietary forms of these products remains strong.
We can already experimentally print out organs by printing a biodegradable scaffolding and then populating it with a patient’s own stem cells, all with a 3D printer.
By the early 2020s, this will reach clinical practice.

No comments: