TechRepublic's Jason Hiner also contributed to this article.
Researchers are only steps away from bioprinting tissues and organs to solve a myriad of injuries and illnesses. TechRepublic has the inside story of the new product accelerating the process.
If you want to understand how close the medical community is to a quantum leap forward in 3D bioprinting, then you need to look at the work that one intern is doing this summer at the University of Louisville.
A team of doctors, researchers, technicians, and students at the Cardiovascular Innovation Institute (CII) on Muhammad Ali Boulevard in Louisville, Kentucky swarm around the BioAssembly Tool (BAT), a square black machine that's solid on the bottom and encased in glass on three sides on the top. There's a large stuffed animal bat sitting on the machine and a computer monitor on the side, showing magnified images of the biomaterial that the machine is printing.
This team stands at the forefront of research in 3D bioprinting, as they methodically take steps toward printing a working human heart. As part of this work, the team is also pioneering breakthroughs in printing human stem cells -- a move that could remove the raging ethical dilemmas associated with stem cells and potentially take regenerative medicine to new heights. The combination of these stem cells and 3D bioprinting is going to help repair or replace damaged human organs and tissues, improve surgeries, and ultimately give patients far better outcomes in dealing with a wide range of illnesses and injuries.
But, there are problems with BAT -- as advanced as it is from its surprising background as a military project. It's way too slow and printing anything with it is a tortuously manual process. The printhead runs on a three-axis robot that doesn't handle curves very well.
No one at the lab knows the limitations and challenges of BAT better than a summer intern named Katie, an undergrad from Georgetown University. She's in Louisville as part of a summer program for the Howard Hughes Medical Institute that exposes students to cutting edge research and lets them participate in groundbreaking work. Katie's not sure what she wants to do when she finishes her bachelor's degree in mathematics but she has thrown herself into her work at the CII with full intensity this summer.
A big part of what Katie does is build intricate scripts to tell BAT what to print. It's similar to a computer programmer writing in assembly language to give a computer system an exact set of instructions. It's an incredibly laborious process and it involves Katie going back and forth with Dr. Jay Hoying, the Division Chief of Cardiovascular Therapeutics at CII and one of the leaders of the 3D bioprinting project.
"What's interesting is Katie's background in mathematics," said Hoying, "which is really essential here because it's basically a geometry problem."
But Hoying and his team are about to get a new 3D bioprinting solution that will accelerate their work so significantly that what has taken Katie half the summer will soon take half a day, according to Hoying.
This new solution's hardware, BioAssemblyBot (BAB), runs as a six-axis robot that is far more precise than BAT. The real difference, however, is in the software: Tissue Structure Information Modeling (TSIM), which is basically a CAD program for biology. It takes the manual coding out of the process and replaces it with something that resembles desktop image editing software. It allows the medical researchers to scan and manipulate 3D models of organs and tissues and then use those to make decisions in diagnosing patients. And then, use those same scans to model tissues (and eventually organs) to print using the BAB.
"It's a big step forward in the capability and technology of bioprinting," said Hoying, "but what someone like me is really excited about is now it enables me to do so much more."
Hoying went back to the example of his highly-capable intern, Katie.
"Katie has spent half the summer just understanding and scripting up and doing this," he said. "Now if Katie can do that in half a day, I can do more biology, I can do more experiments. I can explore new cell combinations.... In that same half a summer I could have explored different structures, different cell-[to]-cell combinations, experiment here growing them up, etc. Where she's taking half the summer to understand the geometry, script it out, test it... with the BAB and the TSIM, I would have finished a handful of experiments."
No comments:
Post a Comment